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Several annelated [n]annulenes are examined from a graph-theoretical point 
of view. It is shown how a new interpretation of the conjugated circuit model 
can be used in order to study the geometries of such compounds. The work 
illustrates which energetical factors determine whether a structure with alter- 
nating bond lengths, or with reduced symmetry is more stable than one with 
full double bond delocalization or full symmetry. 

Key words: Annelted [n]annulenes - -  Chemical graph t h e o r y -  Conjugated 
circuits model - -  Kekul6 structures 

1. Introduction 

In our recent work [1] on annelated [n]annulenes with n = even we have found 
that two types can be distinguished. Type I compounds have either only one 
annelated group or there is to be an even number of sites along the portion of 
the perimeter between the (nearest lying) annelation sites. They are characterized 
by at least one Kekul6-Robinson-Clar formula [2] (which represents the superpo- 
sition of Kekul6 valence structures) where none of the annelated groups is quin- 
oid. In type II compounds an odd number of carbon atoms are present in the 
perimeter between two annelated units so that all Kekul6-Robinson-Clar for- 
mulae contain at least one quinoid annelated group. 

* Dedicated to Professor J. Kouteck,) on the occasion of his 65th birthday. He taught us that the 
progress of chemical science is related to the development of conceptual models with wide ranges 
of applicability and portability 
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With more than two annelated groups a further discrimination of type II com- 
pounds into types IIa and lib is possible depending on the number of quinoid 
and non-quinoid annelated groups. Type IIa compounds possess the same number 
of quinoid and non-quinoid annelated groups, whilst in type IIb compounds the 
number of quinoid and non-quinoid groups differ. 

In Fig. 1 we give examples of type I and type II annelated [n]annulenes. Recently 
[3] the term phenanth-fused for type I and anth-fused for type II dibenzannelated 
[4m + 2]annulenes has been introduced. 

Type I 

1 2 3 

Ill tl lit ~ Itl ~.'3' "~ " ,I 

/4 5 6 

7a 7b 7c 

8a 8b 8c 
Type I Ib 

9a 9b 
Fig. 1. Illustrative examples of typel and II annelated [n]annulenes 
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The number and mutual arrangements of the annelated groups determines the 
geometry of the perimeter and the extent of double bond fixation and hence the 
physical properties such as, for example, 1H N MR shifts [4]. Special interest is 
drawn to type IIa compounds where two equivalent sets of Kekul6-Robinson- 
Clar formulae occur, see 7a, b and 8a, b in Fig. 1. The combination of both sets 
yields a fully symmetric structure. However, we can anticipate that a symmetry 
reduced structure corresponding to just one of the two equivalent Kekul6- 
Robinson-Clar formulae could represent a more stable structure with one quinoid 
benzene ring instead of the fully symmetric one, as in 7c and 8c. 

In order to investigate, quantum chemically, whether a type IIa annulene prefers 
the fully symmetric or a symmetry reduced geometry one could do highly sophisti- 
cated calculations with full geometry optimization [4] or study the Hartree-Fock 
instabilities [5, 6]. Such calculations are very elaborate due to the size of these 
molecules. There exist several simple pencil-and-paper methods such as the 
PMO-method [7], Szentpaly's free-electron PMO approach [8], Herndon's  struc- 
ture-resonance theory [9] or the conjugated circuits model [10, 11]. In this paper 
we will demonstrate how the latter approach can be used for the study of the 
geometry of annelated annulenes. 

2. The conjugated circuits model 

The model has been described in detail elsewhere [10-12]. The resonance energy 
RE c~ is given by the formula 

oo 

RE~=K-a ~ E (a~Rj+boQj), (1) 
i = 1  j - 1  

where K is the total number of Kekul6 structures, whilst the sum runs over all 
K Kekul6 valence structures K~. a~j (by) is the number of conjugated circuits 
with 4j + 2 (4j) carbon atoms in the corresponding Kekul6 valence structure Ki. 
A conjugated circuit is defined as that circuit which exhibits a regular alternation 
of formal double and single bonds. In Eq. (1) we have neglected contributions 
from disjoint circuits within a Kekul6 valence structure. R i and Qi are parameters 
which have been determined as follows [10-12] (all values in eV): 

R 1 = 0.869 Q1 = -1.600 

R 2 = 0.246 Q2 = -0.450 

R 3 = 0.100 Q3 = -0.150 

R 4 = 0.046 Q4 = -0.006 

R~=0 ( i > 4 )  Q~=o ( i>4 ) .  

The total number of conjugated circuits, including disjoint ones, is K -  1 per 
Kekul6 valence structure. 
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The geometry of a molecule is determined by its total energy E, which can be 
written as follows: 

E t = E ~ + E , , .  

The resonance energy is defined as [13] 

R E  cc = Et - ER, 

where ER is the energy of a polyene reference structure. Since ER is constant for 
a given molecule it should be possible to use resonance energies in order to 
derive the most stable geometry of a conjugated molecule. 

3. Application of the conjugated circuit model 

Dibenzo[14]annulene 7 possesses four Kekul6 valence structures which can be 
grouped into two sets Ai and Bi (i = 1, 2), see Fig. 2. Ai and B~ are symmetry 
related with respect to the C2 axis of  this molecule. None of  the four Kekul6 
valence structures transforms according to the fully symmetric representation of 
the point group of 7 [14]. 

The geometry of a molecule which is described by a set of  Kekul6 valence 
structures can be estimated by means of the Pauling bond characters [15] Bs. 
These are given as the number  of  formal double bonds for a given bond s in all 
Kekul6 valence structures Ki in the chosen set {Ki} divided by K. Bs = 0 corre- 
sponds to a quasi single bond (C- -C) ,  Bs = �89 to the "aromat ic"  bond in benzene 
( C ' " C ) ,  and Bs = 1 to a quasi double bond ( C = C ) .  Bond lengths can be calculated 
[15] from Bs. 

Taking into account all Kekul6 valence structures for 7 we arrive at geometry 7c 
with resonance energy 

RECC(AI q-A2 + B1 + B2) = (1/2)(2R1 + R3 + 2R4 + Rs) = 0.965 eV. 

A~ BI 

A 2 B2 
Fig. 2. Kekul6 valence structures of dibenzo[14]annulene 7 (only the conjugated carbon skeleton has 
been given) 
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Using only one of the sets {A1, A2} or {B1, B2} we obtain either quinoid structure 
7a or 7b whose resonance energy is given as follows 

RECC(al + a2) = RECC(B1 + B2) = (1/2)(2R1 + R 3 + 2R4+ Rs). 

Thus we have 

R~CC(A, + A2 + B1 + B~) = ReC~ + A2) = RE~~ B2). 

This result holds for all dibenzannelated type II  annulenes, as can be verified by 
inspection of Eq. (1) due to the fact that such compounds always possess two 
equivalent sets of  Kekul4 valence structures. Consequently the straightforward 
application of the conjugated circuit model to subsets of all Kekul6 valence 
structures does not tell us which geometry is preferred. 

A closer inspection of all subsets of the four Kekul6 valence structures of  7 shows 
that the resonance energy R E  ~ for the single Kekul6 valence structure A1 and 
B1 is given as RE~~ RE~176 R1 + R 3 + R 4  = 1.015 eV, being larger than 
that for the sets {A1, A2, B1, B2}, {A1, A2} or {B1, B2}. Obviously the application 
of the conjugated circuit model to arbitrary subsets of  the Kekul6 valence 
structures is not justified since it attributes erroneously a non-vanishing resonance 
energy to a polyene structure. This can also be demonstrated with [n]annulenes 
_X, where n = 4m +2  or 4m. Both types of  annulenes possess just two Kekul6 
valence structures A and B which are related by a double bond shift along the 
perimeter. The full set {A, B} leads to a fully delocalized geometry X '  with Bs = �89 
for all bonds and a resonance energy RE~ A + B) = ( R / Q )m. Here ( R / Q ),, = R,,, 
if n = 4 m + 2  and (R /Q) , , ,  = Qm if n =4m. As for type I Ia  annulenes, we obtain 
R E ~ ( A + B )  = RE~~ = RE~176  where the sets {A} or {B} lead to a geometry 
X" with alternating quasi single (B, = 0) and double (Bs = 1) bonds. Thus [4m + 2]- 
and [4m]annulenes are not discriminated with respect to their geometry and a 
non-vanishing resonance energy is erroneously attributed to the reference polyene 
structure. This indicates that Eq. (1) cannot reasonably be applied to any set of  
Kekul6 valence structures of  such a molecule. 

4. Modification of the conjugated circuit model 

The failure of  the conjugated circuit model described in the last chapter can be 
avoided if we interpret the conjugated circuit approach in terms of Herndon's  
structure resonance theory [9]. At first sight it might appear  that the conjugated 
circuit model, in which one counts conjugated circuits within each Kekul6 valence 
structure, and the structure resonance theory, which involves resonance integrals 
between Kekul4 structures, are unrelated. However, comparison of the two models 
in an actual application contradicts this [16]. It was shown that they become 
identical if the linearly dependent  conjugated circuits are retained in the conju- 
gated circuit model and if all resonance integrals are kept in the structure 
resonance theory [17]. Therefore we may use the concepts from the latter within 
the conjugated circuit approach.  Actually the equivalence of these two models 
causes each model to constitute a further justification of the other. 
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Let us interpret 2Ri (2 Qi) as the interaction energy between two conjugated circuits 
with 4 i +  2(4i) carbon atoms which are related by a permutation of the double 
bonds, i.e. a shift of the double bonds along the circuit, e.g. 

The resonance energy in the modified conjugated circuit model is calculated 
according to the formula 

p c~ 

R E = ( e / K )  • •' (cuRj+duQj) , (2) 
i = l  j = l  

where the first sum runs over all P = K ( K  - 1)/2 pairs of  Kekul~ valence struc- 
tures, qj(djj) is the number  of  conjugated circuits with 4 j+2(4 j )  carbon atoms 
which are related by a double bond shift along the circuit with respect to the 
chosen pair of  KekulO valence structures. In Eq. (2) any pair of disjoint conjugated 
circuits which are simultaneously related by a double bond shift in two different 
Kekul6 valence structures are not taken into account. This is signified by a prime 
in Eq. (2). The omission of such contributions can easily be demonstrated for 
biphenyl which possesses four KekulO valence structures which are displayed in 
Fig. 3. together with all conjugated circuits. The following circuits are related by 
a double bond shift: al-bl,  al-dl,  a2-b2, a2-c2, b l -q ,  b2-d2, cl-dl, c2-d2, a3-b3, 

A B C D 

O-C) C) Q-(D 
a~ b~ c~ d~ 

0-0 (3--Q (3-Q (D-Q 
a 2 b 2 c 2 d2 

0-00-Q O-Q O-Q 
0 3 b 3 c 3 d 3 

Fig. 3. Kekul6 valence structures A, B, C, and D and conjugated circuits of biphenyl ai, bi, c~ and 
d, (i = 1-3) 
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and c3-d3. However, the last two interactions are neglected since they are derived 
from disjoint circuits and a~-bl, a2-b2, Cl-dl, and c2-d2 are not taken into 
account, since al-b~ and a2-b2 are simultaneously related by a double shift as 
a r e  Cl-d 1 and c2-d 2. 

It is obvious that RE cc=RE if the set of all Kekul~ valence structures is 
considered. However, Eq. (2) generally leads to different results with respect to 
Eq. (1) if subsets are used. This is evident in the case of [n]annulenes X. Eq. 
(2) now correctly yields RE(A)= RE(B)= 0 since there are no pairs of Kekul6 
valence structures. Furthermore we obtain RE(A+B)=(R/Q)m and so the 
modified conjugated circuit method attributes the fully delocalized geometry _X' 
to [4m + 2 ] -  and the olefinic X" to [4m]annulenes due to the different signs of 
Rm and Qm. This result is in agreement with experimental and other theoretical 
findings [5, 18, 19] if m -< 4. For larger m our approach does not allow conclusions 
on the geometry of [n]annulenes since then Rm, Qm =0 according to Eq. (2). 
Furthermore it does not predict bond length alternation for 
[4m + 2]annulenes with sufficiently large m as expected due to more sophisticated 
quantum chemical studies [20]. This is mainly due to two factors: (i) the Pauling 
bond character/3,  is too crude a description of geometries for large annulenes 

1 since B, can only take the values 0, 5, and 1 whereas the Coulson bond order 
varies with ring size [20], (ii) the parameters (R/Q)i have been derived from 
benzenoid hydrocarbons where bond lengths are scattered around the aromatic 
bond length value and so o--compression energies are not properly treated for 
very short and long bonds. However, there are reports in the literature [21] which 
suggest that bond-alternation can be predicted for large annulenes in terms of a 
Kekul6-structure based ansatz for the Pauling-Wheland VB model [22]. 

5. Application of the modified conjugated circuit model 

We consider first monobenzannelated [n]annulenes. They possess three Kekul~ 
valence structures: 

A B, C 

The resonance energies are given as follows: 

RE(A + C) = R1 

RE(B+ C) = (R/O),.  

RE(A + B) = (RIG)m+1 

RE(A + B + C) = (2/3)(R~ + (R/Q),.  + (R/Q),.+O. 
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For n = 4 m + 2 ,  R E ( A + B + C ) > R E ( A + C ) = R E ( B + C ) > R E ( A + B )  if 
m = l  (i.e. for naphthalene) but R E ( A + C ) > R E ( A + B + C ) > R E ( B + C ) ,  
R E ( A + B )  if m > l .  Consequently, monobenzannelated [4m+2]annulenes 
(except naphthalene) should exhibit a geometry which can be represented by the 
KekulO-Robinson-Clar formula 

with bond length alternation in the annulenoid perimeter. This agrees with results 
of experimental [23-25] and quantum chemical [4, 25] studies of 1H NMR shifts 
in the corresponding benzannelated annulenes (e.g. 1 or 2) which demonstrate 
that the ring current effect is considerably reduced for the annulenoid protons. 
For n = 4rn RE (A + C) > RE (A + B + C ) > RE (A + B) > RE  ( B + C) always. An 
example is benzocyclobutadiene which is best represented by the Kekul6- 
Robinson-Clar formula 

according to more sophisticated calculations and experiment [26] in agreement 
with our qualitative results. 

In case of dibenzannelated [n]annulenes we distinguish type I (e.g. 3) and type 
IIa (e.g. 7, 8) compounds. Type I dibenzo[n]annulenes possess five Kekul6 
valence structures 

;x2  cC o 
A B r 

[3 E 

which yield the following resonance energies: 

RE (A + B + C + D + E) = (2/5)(4R, + (R/Q), , ,  + 2(R/Q)m+l + ( R / Q ) m ,  2) 

R E ( A +  B+ C + D) =2RI .  

All other sets of Kekul6 valence structures lead to smaller resonance energies 
and are not given here. Except for n = 6 (i.e. phenanthrene) R E ( A  + B + C + D) > 
RE  ( A + B + C + D + E)  and so a geometry is expected which can be represented 
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by one Kekul6-Robinson-Clar  formula 

with bond length alternation in the annulene part. This agrees with experimental 
[23,27] and quantum chemical [4,25] studies for type I d ibenzo[4m+ 
2]annulenes (e.g. 3) where the ring current effect on 1H NMR is strongly reduced 
for protons at the annulene perimeter. 

Biphenylene is an example of  a type I dibenzannelated [4m]annulene with m = 1. 
In agreement with our qualitative considerations it is characterized by quasi 
single bonds (length 151 pm [28]) connecting the benzene ring units. Other 
examples have been studied elsewhere [29]. 

Type II dibenzannelated [n]annulenes possess only four Kekul~ valence struc- 
tures A1, A2, B1, and B2 which are displayed in Fig. 2 for 7. The following 
resonance energies are derived for a type II dibenzo[n]annulene: 

RE (A1 + A2 + B, + B2) = R1 + (1/2) ( (R/  Q),,,+I + (R /  Q)m+2) 

RE(A1 + A2) = RE(B1 + B2) = R1 

RE (A1 + A2 + B1) = RE (A, + B, + B2) = (2/3)(Ra + (R /  Q)m + (R/  O)re+X) 

RE (A~ + Ae + B2) = RE (A2 + B1 + B2) = (2/3)(R~ + (R/Q)m+l + (R/Q)m+2) 

RE(A1 + B,) = (R/  O)m 

RE(A1 + B2) = RE(A2 + Ba) = (R /  Q)m+l 

RE(A2+ B2) = (R/  Q)m+2. 

For n = 4m + 2 we have RE (A1 + A2 + B1 + B2) > RE ( A  1 q- A2) = RE (B1 + B2). 
Except for m = 1 (i.e. anthracene) RE(A1 + A2) = RE(B~ + B2) is also larger than 
any other resonance energy given above. Consequently our modified conjugated 
circuit approach predicts a fully symmetric geometry such as 7c and 8c for 7 and 
8 instead of quinoid structures such as 7a, b, 8a or b. Only for m > 4 does our 
model fail to discriminate between the fully symmetric and the quinoid species. 
Our result is correct for anthracene (m = 1) and agrees with experimental [23, 
25, 27] and quantum chemical [4, 25] results for some dibenzannelated [4m + 
2]annulenes such as 7 and 8. 

In the case of dibenzannelated type II [4m]annulenes, R E ( A t + A 2 ) =  
RE(BI+B2) is larger than all resonance energies for any other set of Kekul6 
valence structures. Thus our model predicts a quinoid geometry for such com- 
pounds. To the best of our knowledge, examples with a planar geometry of the 
conjugated system are not known yet. 

For type l ib  benzannelated [n]annulenes it is impossible to derive general 
formulae for the resonance energies. Therefore we take 9 as an example. Its six 
Kekul6 valence structures are displayed in Fig. 4. 
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A~ A 2 A 3 
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A~ B~ B 2 
Fig. 4. Kekul~ valence structures of tribenzo[18]annulene 9 

The two largest resonance energies read as follows: 

RE(AI+A2+A3+A4) =2R1 = 1.738 eV> RE(AI+A2+A3+A4+B~+B2) 

= (1/3)(5R1 + R4+ 3R5 + 3R6 q- R7) = 1.464 eV. 

Consequently, geometry 9a with one quinoid benzene ring is favoured over the 
fully delocalized structure 9b which should be reflected in physical properties 
such as ~H NMR shifts. 

Finally we will consider [n]annuleno[n]annulenes,  see for example 4-6 in Fig. 
1, which constitute type I systems. We can distinguish three Kekul6 valence 
structures: 

(;) 
A 

Y 

B C 

Here k can take values - 0 .  Sets {A, B} and {A, B, C} lead to fully symmetric 
geometries where {A, B} is characterized by multiple bond delocalization along 
the outer perimeter and multiple bond localization in t h e  bridge (if k >  0). 
Symmetry reduced geometries are derived from sets {A, C} and {B, C} with one 
annulene part fully delocalized and the other one with bond length alternation. 
The occurrence of pairs of  adjacent sp-hybridized carbon atoms will necessarily 
lead to shorter bond lengths between such atoms with respect to the CC bond 
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length in benzene even in the case of multiple bond length delocalization. The 
resonance energies for [n]annuleno[n]annulenes are given as follows: 

n=4m+2: RE(A+B+C)=(4Rm+2R2m-k) /3  

R E ( A +  C) = RE(B-t-  C)  = em 

RE(A+ B) = R2m-k 

n = 4m: RE (A + B + C) = (4Qm + 2R2,,,-k-O/3 

RE(A + C) = RE(B + C) = Q,, 

RE(A+ B) = R2,,-k-1. 

For n = 4 m + 2  it follows that R E ( A + B + C ) > R E ( A + C ) = R E ( B + C ) >  
RE(A+ B) and so a fully symmetric geometry derived from {A, B, C} should be 
realized. This agrees with experimental and quantum chemical studies [19] of 
geometries and 1H NMR shifts for several dehydro[ n ]annuleno[ n ]annulenes with 
n = 14, 18 and k = 0 ,  1. An example is provided by 4 where the formula given in 
Fig. 1 only roughly describes the actual bond lengths pattern. 

For n = 4m the set {A, B} exhibits a larger resonance energy than all other sets. 
For example we obtain RE(A+B)=O.O46eV, R E ( A + C ) = R E ( B + C ) =  
-0.150 eV, and R E ( A + B + C ) = - O . 1 3 6 e V  for 5 with n = 12 and k =  1. 

This is in agreement with the results of our earlier work [19] which demonstrated 
that 5 is well represented by the formula given in Fig. 1. Contrary to 5 we obtain 
RE(A+ B) = 0 eV in the case of 6 with the same n but k = 0. Thus the sets {A, B}, 
{A}, {B}, and {C} are degenerate with respect to their resonance energies and 
the modified conjugated circuit approach only allows the exclusion of the 
geometries with reduced symmetry which are derived from sets {A, C} and {B, C}. 
Actually more sophisticated calculations [19] yield a geometry corresponding to 
KekulO valence structure C which has been displayed in Fig. 1 for 6. 

6. Conclusion 

In this paper we have applied the conjugated circuits model as a pencil-and-paper 
method in order to study the geometries of annelated [n]annulenes. This has 
been achieved by considering all possible sets {Ki, K j , . . .  } of Kekul6 valence 
structures {Ki[ i = 1 , . . . ,  K} of a given molecule. Since each set defines a geometry 
or a certain bond length pattern we have used the resonance energy obtained 
within the conjugated circuits model in order to determine the most stable 
structure. Using this concept it proved necessary to modify the conjugated circuits 
approach by means of a different interpretation of the terms R~ and Qi- This 
modified model, which yields the same results as the original one if all Kekul6 
valence structures are utilized, has been successfully applied to different types 
of annelated annulenes. 

We want to stress that our results are mainly of a qualitative nature. In order to 
obtain quantitative results for annulenoid systems with large perimeters one needs 
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a better topological bond order than that provided by the Pauling bond character. 
Furthermore, part of the o--compression energy would have to be included 
explicitly since the R~, Q~ parameters have been fixed at their values obtained 
for benzenoid hydrocarbons where there is no strong bond length alternation. 
Investigations following these lines are under way [30]. 

Acknowledgements. We are thankful Professor Milan Randi6 (Ames) and Dr. Stuart Carter (Reading, 
England) for helpful discussions and comments. 
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